Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054599

RESUMO

Transient permeation enhancers (PEs) have been widely used to improve the oral absorption of macromolecules. During pharmaceutical development, the correct selection of the macromolecule, PE, and the combination needs to be made to maximize oral bioavailability and ensure successful clinical development. Various in vitro and in vivo methods have been investigated to optimize this selection. In vitro methods are generally preferred by the pharmaceutical industry to reduce the use of animals according to the "replacement, reduction, and refinement" principle commonly termed "3Rs," and in vitro methods typically have a higher throughput. This paper compares two in vitro methods that are commonly used within the pharmaceutical industry, being Caco-2 and an Ussing chamber, to two in vivo models, being in situ intestinal instillation to rats and in vivo administration via an endoscope to pigs. All studies use solution formulation of sodium caprate, which has been widely used as a PE, and two macromolecules, being FITC-dextran 4000 Da and MEDI7219, a GLP-1 receptor agonist peptide. The paper shares our experiences of using these models and the challenges with the in vitro models in mimicking the processes occurring in vivo. The paper highlights the need to consider these differences when translating data generated using these in vitro models for evaluating macromolecules, PE, and combinations thereof for enabling oral delivery.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Ratos , Animais , Suínos , Mucosa Intestinal/metabolismo , Células CACO-2 , Intestinos , Administração Oral , Permeabilidade
2.
J Control Release ; 353: 792-801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493948

RESUMO

The bioavailability of peptides co-delivered with permeation enhancers following oral administration remains low and highly variable. Two factors that may contribute to this are the dilution of the permeation enhancer in the intestinal fluid, as well as spreading of the released permeation enhancer and peptide in the lumen by intestinal motility. In this work we evaluated an Intestinal Administration Device (IAD) designed to reduce the luminal dilution of drug and permeation enhancer, and to minimize movement of the dosage form in the intestinal lumen. To achieve this, the IAD utilizes an expanding design that holds immediate release mini tablets and places these in contact with the intestinal epithelium, where unidirectional drug release can occur. The expanding conformation limits movement of the IAD in the intestinal tract, thereby enabling drug release at a single focal point in the intestine. A pig model was selected to study the ability of the IAD to promote intestinal absorption of the peptide MEDI7219 formulated together with the permeation enhancer sodium caprate. We compared the IAD to intestinally administered enteric coated capsules and an intestinally administered solution. The IAD restricted movement of the immediate release tablets in the small intestine and histological evaluation of the mucosa indicated that high concentrations of sodium caprate were achieved. Despite significant effect of the permeation enhancer on the integrity of the intestinal epithelium, the bioavailability of MEDI7219 was of the same order of magnitude as that achieved with the solution and enteric coated capsule formulations (2.5-3.8%). The variability in plasma concentrations of MEDI7219 were however lower when delivered using the IAD as compared to the solution and enteric coated capsule formulations. This suggests that dosage forms that can limit intestinal dilution and control the position of drug release can be a way to reduce the absorptive variability of peptides delivered with permeation enhancers but do not offer significant benefits in terms of increasing bioavailability.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Suínos , Mucosa Intestinal/metabolismo , Peptídeos/química , Absorção Intestinal , Administração Oral , Comprimidos , Disponibilidade Biológica
3.
Mol Pharm ; 19(7): 2564-2572, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642793

RESUMO

In this work, we studied the intestinal absorption of a peptide with a molecular weight of 4353 Da (MEDI7219) and a protein having a molecular weight of 11 740 Da (PEP12210) in the rat intestinal instillation model and compared their absorption to fluorescein isothiocyanate (FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa). To increase the absorption of the compounds, the permeation enhancer sodium caprate (C10) was included in the liquid formulations at concentrations of 50 and 300 mM. All studied compounds displayed an increased absorption rate and extent when delivered together with 50 mM C10 as compared to control formulations not containing C10. The time period during which the macromolecules maintained an increased permeability through the intestinal epithelium was approximately 20 min for all studied compounds at 50 mM C10. For the formulations containing 300 mM C10, it was noted that the dextrans displayed an increased absorption rate (compared to 50 mM C10), and their absorption continued for at least 60 min. The absorption rate of MEDI7219, on the other hand, was similar at both studied C10 concentrations, but the duration of absorption was extended at the higher enhancer concentration, leading to an increase in the overall extent of absorption. The absorption of PEP12210 was similar in terms of the rate and duration at both studied C10 concentrations. This is likely caused by the instability of this molecule in the intestinal lumen. The degradation decreases the luminal concentrations over time, which in turn limits absorption at time points beyond 20 min. The results from this study show that permeation enhancement effects cannot be extrapolated between different types of macromolecules. Furthermore, to maximize the absorption of a macromolecule delivered together with C10, prolonging the duration of absorption appears to be important. In addition, the macromolecule needs to be stable enough in the intestinal lumen to take advantage of the prolonged absorption time window enabled by the permeation enhancer.


Assuntos
Dextranos , Absorção Intestinal , Animais , Fluoresceína-5-Isotiocianato , Mucosa Intestinal/metabolismo , Permeabilidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...